
CNeRF + The Sim Theory Scheduler: A Case Study

Goal

In December 2024, Simulation Theory needed a good candidate project to demonstrate how an application using
an optimized framework can benefit from a minimal code impact, low-effort integration with Sim Theory’s
proprietary Scheduler technology.

The requirements were:

➔ A CPU-intensive computational load
➔ Use of common frameworks
➔ Open source
➔ Implemented in C/C++

CNeRF1 was chosen because it meets the requirements in the following ways:

➔ NeRF2 methods are computationally intensive
➔ CNeRF3 is implemented using PyTorch (a commonly used compute framework)
➔ PyTorch uses OpenMP internally for CPU parallelization
➔ CNeRF is open source with an MIT license
➔ CNeRF is implemented in C/C++

Hypothesis

Simulation Theory can improve CNeRF’s CPU occupancy by 30% or more if Sim Theory’s Scheduler is integrated
at a top-level domain in the application. This work should not disrupt or modify the fork and join nature of
OpenMP within PyTorch.

Out of the box, running on the CPU, CNeRF was achieving an effective CPU occupancy of 39.5% using about 25 of
the 64 available logical CPU cores. This performance is due to PyTorch, its use of OpenMP, and the parallelization
OpenMP provides.

3 CNeRF provides a minimal implementation of Neural Radiance Fields (NERF) which is a method for synthesizing
novel views of complex scenes using neural inverse modelling. The code is written in C++ and utilizes LibTorch for
automatic differentiation.

2 A neural radiance field (NeRF) is a method for reconstructing a three-dimensional representation of a scene from
two-dimensional images based on deep learning. It is computationally expensive because the NeRF algorithm
represents a scene as a radiance field parametrized by a deep neural network (DNN). The network predicts a
volume density and view-dependent emitted radiance given the spatial location (x, y, z) and viewing direction in
Euler angles (θ, Φ) of the camera. By sampling many points along camera rays, traditional volume rendering
techniques can produce an image.

1 https://github.com/rafaelanderka/cNeRF

1

https://github.com/rafaelanderka/cNeRF

Integration

Simulation Theory approached integration with CNeRF in two ways:

➔ Subdivide the work into equally-sized blocks. The Scheduler was initialized with N threads. All work was

then broken up inside the Scheduler into N evenly-sized blocks and processed one block per thread. The
result of this is a small number of large tasks processing simultaneously on N threads.

➔ Place all work in a work buffer using an atomic incrementor. The Scheduler was initialized with N threads.
An atomic incrementor was used to gate access by the N threads to the data buffer. This is the most
efficient use of the Scheduler and results in fine-grained tasks processing simultaneously on N threads.

Results

Within a 4 hour development lifecycle, a member of the Simulation Theory team was able to integrate our
Scheduler technology into the CNeRF project using two different work distribution models.

Data Processing Time

Using the same data set as the baseline test along with the new fine-grained work distribution implementation,
the Simulation Theory Scheduler was able to reduce the total processing time from approximately 11 hours to 7.5
hours, a reduction of about 31.8%. We expect that we can demonstrate a more significant reduction, however, the
testing system was disk IO bound during testing.

CPU Occupancy

The overall CPU occupancy was 39.5% on 25.267 out of 64 logical CPU cores in the baseline implementation of
CNeRF.

Using the large-block work distribution model of the Simulation Theory Scheduler implementation, CPU
occupancy improved to 57.4% on 36.735 out of 64 logical CPU cores, an improvement of 31.2%.

Using the fine-grained work distribution model of the Simulation Theory Scheduler implementation, CPU
occupancy improved to 65.2% on 41.743 out of 64 logical CPU cores, an improvement of 39.47%.

2

CNeRF Original Performance Graph4

4 Simulation Theory used Intel V-Tune to capture these and the following performance metrics from the testing.
3

CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph

4

CNeRF Simulation Theory Small Tasks Performance Graph

Author: Randy Culley, CTO
sales@simtheoryinc.com

simtheoryinc.com
Copyright © 2025. Simulation Theory, Inc. All Rights Reserved.

5

mailto:sales@simtheoryinc.com
http://simtheoryinc.com

	CNeRF + The Sim Theory Scheduler: A Case Study
	Goal
	Hypothesis
	Integration
	Results
	Data Processing Time
	CPU Occupancy
	CNeRF Original Performance Graph4
	CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph
	CNeRF Simulation Theory Small Tasks Performance Graph

