T H

THE SIM THEORY SCHEDULER

GOAL

In December 2024, Simulation Theory integrated the Sim Theory proprietary Scheduler technology into the CNeRF
project'. This integration resulted in approximately a 39% increase in CPU occupancy.

Once the performance boost the Simulation Theory Scheduler achieved was clear, the team wanted to find out
how the Scheduler compared to other solutions. All publicly available threading and scheduling solutions were
assessed to find out which had a feature set closest to the Sim Theory Scheduler for the most fair comparison.

The requirements were:

Multiple options for parallelization of work
CPU agnostic

Readily available

Provides a C/C++ API

Vi by

Intel oneAPI? and oneTBB? were chosen because they meet the requirements in the following ways:

Support a work stealing job system

Support parallel for

Support x64 and community support for aarch64
Readily available and our team has experience using it
C++ API

XA XX

HYPOTHESIS

Simulation Theory’s Scheduler technology can perform better than Intel's oneTBB when integrated with CNeRF at
the top-level domain of the application. Neither Simulation Theory's Scheduler nor Intel’s oneTBB should disrupt
or modify the fork and join nature of OpenMP within PyTorch.

Out of the box, running on the CPU, CNeRF was achieving an effective CPU occupancy of 39.5% using about 25 of
the 64 available logical CPU cores. This performance is due to PyTorch, its use of OpenMP, and the parallelization
OpenMP provides.

" https://github.com/rafaelanderka/cNeRF
2

https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-b
uilding-blocks-onetbb.html
3 https://github.com/uxlfoundation/oneTBB

https://github.com/uxlfoundation/oneTBB
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-building-blocks-onetbb.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-building-blocks-onetbb.html
https://github.com/rafaelanderka/cNeRF

SIS

THETUDORY

INTEGRATION

Simulation Theory approached integration with CNeRF in the following ways:
SIMULATION THEORY’S SCHEDULER

-> Subdivide the work into equally-sized blocks. The Scheduler was initialized with N threads. All work was
then broken up inside the Scheduler into N evenly-sized blocks and processed one block per thread. The
result of this is a small number of large tasks processing simultaneously on N threads.

> Place all work in a work buffer using an atomic incrementor. The Scheduler was initialized with N threads.
An atomic incrementor was used to gate access by the N threads to the data buffer. This is the most
efficient use of the Scheduler and results in fine-grained tasks processing simultaneously on N threads.

INTEL'S ONETBB

> Use the oneTBB job system to create equally-sized blocks. oneTBB was initialized with N threads. All work
was divided into jobs and submitted to oneTBB for execution. The result of this is a small number of large
tasks processing simultaneously on N threads.

> Use the oneTBB parallel for solution to mimic the approach that was used with the Simulation Theory
Scheduler and an atomic incrementor. This effectively resulted in fine-grained tasks processing
simultaneously on N threads.

RESULTS

Building on top of Simulation Theory's prior integration of the Scheduler, integrating oneTBB into CNeRF only
required a couple of hours of additional work. For all of the following testing, the Simulation Theory Scheduler and
Intel’s oneTBB were initialized with the same number of threads.

T HE

CPU OCCUPANCY

The overall CPU occupancy was 39.5% on 25.267 out of 64 logical CPU cores in the baseline implementation of
CNeRF.

LARGE-BLOCK WORK DISTRIBUTION

= Using the large-block work distribution model of Intel oneTBB, CPU occupancy improved to 56.8% on
36.361 out of 64 logical CPU cores. This was an improvement of 30.5%.

=> Using the large-block work distribution model of the Simulation Theory Scheduler implementation, CPU
occupancy improved to 57.4% on 36.735 out of 64 logical CPU cores. This was an improvement of 31.2%.

=> Simulation Theory’s Scheduler technology beat Intel's oneTBB performance by 1% using the large-block
work distribution method.

FINE-GRAINED WORK DISTRIBUTION

> Using the fine-grained work distribution model of Intel oneTBB, CPU occupancy improved to 57.4% of
36.760 out of 64 logical CPU cores. This was an improvement of 31.3%.

=> Using the fine-grained work distribution model of the Simulation Theory Scheduler implementation, CPU
occupancy improved to 65.2% on 41.743 out of 64 logical CPU cores. This was an improvement of 39.47%.

=> Simulation Theory’s Scheduler technology beat Intel’s oneTBB performance by 11.9% using the fine-grained
work distribution method.

T Intel VTune Profiler

Project Navigator + 0O & ||| Welcome r000tr
Z » I animation_testbed Threading @ ol INTEL VTUNE PROFILER
= ~ I cnert Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform
= 1000tr
» I cnerf-sti-large Elapsed Time : 345.058s
B ~ I cnerf-sti-small Paused Time ©: 45.015s
D roootr
PUIErEEIE Effective CPU Utilization : 39.5% (25.267 out of 64 logical CPUs) &
QD » I cnerf-tob-small Effective CPU Utilization Histogram
» I demo_flocking This histogram displays a percentage of the wall lime the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

» I flocking_clang
140s.

» Im graphics_testbed g
£
» I new_scheduler_clang 120e 3
£
» I new-scheduler 1005 &

» I sti-americana-demo-dx12
» I sti-flocking-demo-dx12-clang
» M unity-americana

werage Effectve CPU Utilization

OpenMP Analysis. Collection Time 2 300.042
Serial Time (outside parallel regions) “: 22.717s (7.6%)
Parallel Region Time : 277.226s (92.4%)
Estimated Ideal Time 2177525 (72.6%)
OpenMP Potential Gain 4s (19

Top OpenMP Regions by Potential Gain
This section lists OpenP regions with the highest potential for performance imprevement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance
assuming no runtime overhead.

OpenidP Region OpenMP Potential Gain (%) OpeniP Region Time
1 277 3265

@ unknownompparallel:32 @unknown:0:0 595745k

* Simulation Theory used Intel V-Tune to capture these and the following performance metrics from the testing.
4

T Intel VTune Profiler

Project Navigator + 0O & ||| Welcome r003tr
T
» I animation_testbed Threading @ ol INTEL VTUNE PROFILER
= ~ I cnerfsti-large Analysis Configuration Collection Log ~ Summary ~ Bottom-up Caller/Callee Top-down Tree Platform
= 1000tr
~ M cnerf-sti-small Elapsed Time : 345.057s
Ef roootr Paused Time ©: 45.012s
D ~ I cnerf-tbb-large
g Effective CPU Utilization : 56.8% (36.361 out of 64 logical CPUs) &
q' ~ I cnerf-tbb-small Effective CPU Utilization Histogram
roootr This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

» Im demo_flocking
» I flocking_clang
» I graphics_testbed Tas
» [new_scheduler_clang

» I new-scheduler

» I sti-americana-demo-dx12

» I sti-flocking-demo-dx12-clang
» I unity-americana 4=

Elapsed Time

OpenMP Analysis. Collection Time 2 300.046

Serial Time (outside parallel regions) “': 0.957s (0.3%)

Parallel Region Time ©: 528.498s (176.1%)
Estimated Ideal Time 434 5833 (144.8%)
OpenMP Potential Gain
Top OpenMP Regions by Potential Gain
This section lists OpenP regions with the highest potential for performance imprevement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance
assuming no runtime overhead.

9155 (31.3%) &

OpenidP Region OpenMP Potential Gain (%) OpeniP Region Time
@ unknown$ompsparallel:32@unknown:0:0 351.730s® 117.2%R 528.4985

T Intel VTune Profiler

Project Navigator + 0O

» I animation_testbed
~ I cnerf-sti-large
roootr
~ I cnerf-sti-small
roootr
» I cneri-tbb-large
~ I cnerf-tbb-small
roootr
» I demo_flocking
» Im flocking_clang
» Im graphics_testbed
» I new_scheduler_clang
» | new-scheduler
» I sti-americana-demo-dx12
» I sti-flocking-demo-dx12-clang
» I unity-americana

=

\Welcome roootr

Threading @

Analysis Configuration Collection Log ~ Summary Bottom-up Caller/Callee Top-down Tree Platform
Elapsed Time : 345.046s

Paused Time ©: 45.047s

Effective CPU Utilization : 57.4% (36.735 out of 64 logical CPUs) &

Effective CPU Utilization Histogram

This histegram displays a percentage of the wall time the specific number of CPUs were running simultanecusly. Spin and Overhead time adds to the Idle CPU utilization value.

Elapsed Time

OpenMP Analysis. Collection Time (: 299.999
Serial Time (outside parallel regions) “': 0.961s (0.3%)
Parallel Region Time ©: 532.439s (177.5%)
Estimated Ideal Time 438 2783 (146.1%)
OpenMP Potential Gain 161s (31.4°
Top OpenMP Regions by Potential Gain

3

Simuttane

sy Utiized Logical GPUs

INTEL VTUNE PROFILER

-]

Target Utilization

This section lists OpenlP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance

assuming no runtime overhead

OpeniiP Region

unknownompparallel:32 @unknown:0:0

(%) OpenMP Region Time

532 4393

T Intel VTune Profiler

Project Navigator + 0 Welcome r000tr

g Threading © @ INTEL VTUNE PROFILER

» I animation_testbed

= ~ I cnerf-sti-large Analysis Configuration Collection Log ~ Summary ~ Bottom-up ~ Caller/Callee Top-down Tree Platform
= r000tr
[EEfsraTEl Elapsed Time : 345.135s

= roootr Paused Time ©: 45.040s
D ~ [cneri-tbb-large

Ry Effective CPU Utilization : 57.4% (36.760 out of 64 logical CPUs)
» ~ I cnerf-tob-small Effective CPU Utilization Histogram

roootr This histegram displays a percentage of the wall time the specific number of CPUs were running simultanecusly. Spin and Overhead time adds to the Idle CPU utilization value.

» I demo_flocking
» I flocking_clang
» M graphics_testbed Tds
» I new_scheduler_clang

» I new-scheduler

» I sti-americana-demo-dx12

» I sti-flocking-demo-dx12-clang
» I unity-americana 4

Elapsed Time

Target Utilization

Simuttane

sy Utiized Logical GPUs

OpenMP Analysis. Collection Time 2 300.096

Serial Time (outside parallel regions) “: 0.788s (0.3%)

Parallel Region Time ©: 529.624s (176.5%)
Estimated Ideal Time 4357783 (145.2%)
QpeniP Potential Gain 846s (31.3%) &
Top OpenMP Regions by Potential Gain
This section lists OpenlP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance
assuming no runtime overhead,

OpeniiP Region OpenliP Potential Gain (% OpenMP Region Time
117.19 529 6245

@ unknown$omps$parallel:32@unknown:0:0 3513645k

T Intel VTune Profiler

Project Navigator + 0 Welcome r000tr
T
» I animation_testbed Threading @ INTELVTUNE PROFILER
= » I cnerf-sti-large Analysis Configuration Collection Log ~ Summary ~ Bottom-up ~ Caller/Callee Top-down Tree Platform
B ~ B cnerf-sti-small
= 10001r Elapsed Time : 345.085s
» I cnerf-tbb-iarge Paused Time ©: 45.006s
D ~ I cnerf-tbb-small
rooorr Effective CPU Utilization : 65.2% (41.743 out of 64 logical CPUs) &
qb » I demo_flocking Effective CPU Utilization Histogram
» I flocking_clang This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

» I graphics_testbed

» Im new_scheduler_clang
» I new-scheduler 148
» I sti-americana-demo-ax12

» I sti-flocking-demo-dx12-clang
» Im unity-americana

<
S
=

]

Elapsed Time
Target Utilization

Simuttane

sy Utiized Logical GPUs

OpenMP Analysis. Collection Time 2 300.079
Serial Time (outside parallel regions) “': 0.975s (0.3%)
Parallel Region Time ©: 537.804s (179.2%)
Estimated Ideal Time 450.0463 (150.0%)
OpenMP Potential Gain 87.758s
Top OpenMP Regions by Potential Gain
This section lists OpenlP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance
assuming no runtime overhead,

OpenMP Region Time

OpeniP Region OpenP Potential Gain (%
y 110 42 537.804s

@ unknown$omps$parallel:32@unknown:0:0 331

Author: Randy Culley, CTO
sales@simtheoryinc.com
simtheoryinc.com
Copyright © 2025. Simulation Theory, Inc. All Rights Reserved.

mailto:sales@simtheoryinc.com
http://simtheoryinc.com

	CNeRF Revisited + The Sim Theory Scheduler: A Case Study
	Goal
	Hypothesis
	Integration
	Simulation Theory’s Scheduler
	Intel’s oneTBB

	Results
	
	CPU Occupancy
	Large-block Work Distribution
	Fine-Grained Work Distribution

	CNeRF Original Performance Graph4
	
	CNeRF Intel oneTBB Large, Equally-Sized Tasks Performance Graph
	CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph
	CNeRF Intel oneTBB Small Tasks Performance Graph
	CNeRF Simulation Theory Small Tasks Performance Graph

