
CNeRF Revisited + The Sim Theory Scheduler: A Case Study

Goal

In December 2024, Simulation Theory integrated the Sim Theory proprietary Scheduler technology into the CNeRF
project1. This integration resulted in approximately a 39% increase in CPU occupancy.

Once the performance boost the Simulation Theory Scheduler achieved was clear, the team wanted to find out
how the Scheduler compared to other solutions. All publicly available threading and scheduling solutions were
assessed to find out which had a feature set closest to the Sim Theory Scheduler for the most fair comparison.

The requirements were:

➔​ Multiple options for parallelization of work
➔​ CPU agnostic
➔​ Readily available
➔​ Provides a C/C++ API

Intel oneAPI2 and oneTBB3 were chosen because they meet the requirements in the following ways:

➔​ Support a work stealing job system
➔​ Support parallel for
➔​ Support x64 and community support for aarch64
➔​ Readily available and our team has experience using it
➔​ C++ API

Hypothesis

Simulation Theory’s Scheduler technology can perform better than Intel’s oneTBB when integrated with CNeRF at
the top-level domain of the application. Neither Simulation Theory's Scheduler nor Intel’s oneTBB should disrupt
or modify the fork and join nature of OpenMP within PyTorch.

Out of the box, running on the CPU, CNeRF was achieving an effective CPU occupancy of 39.5% using about 25 of
the 64 available logical CPU cores. This performance is due to PyTorch, its use of OpenMP, and the parallelization
OpenMP provides.

3 https://github.com/uxlfoundation/oneTBB

2
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-b
uilding-blocks-onetbb.html

1 https://github.com/rafaelanderka/cNeRF

1

https://github.com/uxlfoundation/oneTBB
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-building-blocks-onetbb.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-building-blocks-onetbb.html
https://github.com/rafaelanderka/cNeRF

Integration

Simulation Theory approached integration with CNeRF in the following ways:

Simulation Theory’s Scheduler

➔​ Subdivide the work into equally-sized blocks. The Scheduler was initialized with N threads. All work was

then broken up inside the Scheduler into N evenly-sized blocks and processed one block per thread. The
result of this is a small number of large tasks processing simultaneously on N threads.

➔​ Place all work in a work buffer using an atomic incrementor. The Scheduler was initialized with N threads.
An atomic incrementor was used to gate access by the N threads to the data buffer. This is the most
efficient use of the Scheduler and results in fine-grained tasks processing simultaneously on N threads.

Intel’s oneTBB

➔​ Use the oneTBB job system to create equally-sized blocks. oneTBB was initialized with N threads. All work
was divided into jobs and submitted to oneTBB for execution. The result of this is a small number of large
tasks processing simultaneously on N threads.

➔​ Use the oneTBB parallel for solution to mimic the approach that was used with the Simulation Theory
Scheduler and an atomic incrementor. This effectively resulted in fine-grained tasks processing
simultaneously on N threads.

Results

Building on top of Simulation Theory's prior integration of the Scheduler, integrating oneTBB into CNeRF only
required a couple of hours of additional work. For all of the following testing, the Simulation Theory Scheduler and
Intel’s oneTBB were initialized with the same number of threads.

2

CPU Occupancy

The overall CPU occupancy was 39.5% on 25.267 out of 64 logical CPU cores in the baseline implementation of
CNeRF.

Large-block Work Distribution

➔​ Using the large-block work distribution model of Intel oneTBB, CPU occupancy improved to 56.8% on
36.361 out of 64 logical CPU cores. This was an improvement of 30.5%.

➔​ Using the large-block work distribution model of the Simulation Theory Scheduler implementation, CPU
occupancy improved to 57.4% on 36.735 out of 64 logical CPU cores. This was an improvement of 31.2%.

➔​ Simulation Theory’s Scheduler technology beat Intel’s oneTBB performance by 1% using the large-block
work distribution method.

Fine-Grained Work Distribution

➔​ Using the fine-grained work distribution model of Intel oneTBB, CPU occupancy improved to 57.4% of
36.760 out of 64 logical CPU cores. This was an improvement of 31.3%.

➔​ Using the fine-grained work distribution model of the Simulation Theory Scheduler implementation, CPU
occupancy improved to 65.2% on 41.743 out of 64 logical CPU cores. This was an improvement of 39.47%.

➔​ Simulation Theory’s Scheduler technology beat Intel’s oneTBB performance by 11.9% using the fine-grained
work distribution method.

3

CNeRF Original Performance Graph4

4 Simulation Theory used Intel V-Tune to capture these and the following performance metrics from the testing.
4

CNeRF Intel oneTBB Large, Equally-Sized Tasks Performance Graph

5

CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph

6

CNeRF Intel oneTBB Small Tasks Performance Graph

7

CNeRF Simulation Theory Small Tasks Performance Graph

Author: Randy Culley, CTO
sales@simtheoryinc.com

simtheoryinc.com
Copyright © 2025. Simulation Theory, Inc. All Rights Reserved.

8

mailto:sales@simtheoryinc.com
http://simtheoryinc.com

	CNeRF Revisited + The Sim Theory Scheduler: A Case Study
	Goal
	Hypothesis
	Integration
	Simulation Theory’s Scheduler
	Intel’s oneTBB

	Results
	
	CPU Occupancy
	Large-block Work Distribution
	Fine-Grained Work Distribution

	CNeRF Original Performance Graph4
	
	CNeRF Intel oneTBB Large, Equally-Sized Tasks Performance Graph
	CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph
	CNeRF Intel oneTBB Small Tasks Performance Graph
	CNeRF Simulation Theory Small Tasks Performance Graph

