
CNeRF Revisited + The Sim Theory
Scheduler: A Case Study
Goal
In December 2024, Simulation Theory integrated the Sim Theory proprietary Scheduler technology into
the CNeRF project1. This integration resulted in approximately a 39% increase in CPU occupancy.

Once the performance boost the Simulation Theory Scheduler achieved was clear, the team wanted to
find out how the Scheduler compared to other solutions. All publicly available threading and scheduling
solutions were assessed to find out which had a feature set closest to the Sim Theory Scheduler for the
most fair comparison.

The requirements were:

➔ Multiple options for parallelization of work
➔ CPU agnostic
➔ Readily available
➔ Provides a C/C API

Intel oneAPI2 and oneTBB3 were chosen because they meet the requirements in the following ways:

➔ Support a work stealing job system
➔ Support parallel for
➔ Support x64 and community support for aarch64
➔ Readily available and our team has experience using it
➔ C API

3 https://github.com/uxlfoundation/oneTBB

2
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/20241/intel-oneapi-threa
ding-building-blocks-onetbb.html

1 https://github.com/rafaelanderka/cNeRF

1

https://github.com/uxlfoundation/oneTBB
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-building-blocks-onetbb.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-1/intel-oneapi-threading-building-blocks-onetbb.html
https://github.com/rafaelanderka/cNeRF

Hypothesis
Simulation Theoryʼs Scheduler technology can perform better than Intelʼs oneTBB when integrated with
CNeRF at the top-level domain of the application. Neither Simulation Theory's Scheduler nor Intelʼs
oneTBB should disrupt or modify the fork and join nature of OpenMP within PyTorch.

Out of the box, running on the CPU, CNeRF was achieving an effective CPU occupancy of 39.5% using
about 25 of the 64 available logical CPU cores. This performance is due to PyTorch, its use of OpenMP,
and the parallelization OpenMP provides.

Integration
Simulation Theory approached integration with CNeRF in the following ways:

Simulation Theoryʼs Scheduler

➔ Subdivide the work into equally-sized blocks. The Scheduler was initialized with N threads. All
work was then broken up inside the Scheduler into N evenly-sized blocks and processed one
block per thread. The result of this is a small number of large tasks processing simultaneously on
N threads.

➔ Place all work in a work buffer using an atomic incrementor. The Scheduler was initialized with
N threads. An atomic incrementor was used to gate access by the N threads to the data buffer.
This is the most efficient use of the Scheduler and results in fine-grained tasks processing
simultaneously on N threads.

Intelʼs oneTBB

➔ Use the oneTBB job system to create equally-sized blocks. oneTBB was initialized with N

threads. All work was divided into jobs and submitted to oneTBB for execution. The result of this
is a small number of large tasks processing simultaneously on N threads.

➔ Use the oneTBB parallel for solution to mimic the approach that was used with the Simulation
Theory Scheduler and an atomic incrementor. This effectively resulted in fine-grained tasks
processing simultaneously on N threads.

2

Results
Building on top of Simulation Theory's prior integration of the Scheduler, integrating oneTBB into CNeRF
only required a couple of hours of additional work. For all of the following testing, the Simulation Theory
Scheduler and Intelʼs oneTBB were initialized with the same number of threads.

CPU Occupancy
The overall CPU occupancy was 39.5% on 25.267 out of 64 logical CPU cores in the baseline implementation of
CNeRF.

Large-block Work Distribution
➔ Using the large-block work distribution model of Intel oneTBB, CPU occupancy improved to 56.8% on

36.361 out of 64 logical CPU cores. This was an improvement of 30.5%.
➔ Using the large-block work distribution model of the Simulation Theory Scheduler implementation, CPU

occupancy improved to 57.4% on 36.735 out of 64 logical CPU cores. This was an improvement of 31.2%.
➔ Simulation Theory’s Scheduler technology beat Intel’s oneTBB performance by 1% using the large-block

work distribution method.

Fine-Grained Work Distribution
➔ Using the fine-grained work distribution model of Intel oneTBB, CPU occupancy improved to 57.4% of

36.760 out of 64 logical CPU cores. This was an improvement of 31.3%.
➔ Using the fine-grained work distribution model of the Simulation Theory Scheduler implementation, CPU

occupancy improved to 65.2% on 41.743 out of 64 logical CPU cores. This was an improvement of 39.47%.
➔ Simulation Theory’s Scheduler technology beat Intel’s oneTBB performance by 11.9% using the fine-grained

work distribution method.

3

CNeRF Original Performance Graph4

4 Simulation Theory used Intel VTune to capture these and the following performance metrics from the
testing.

4

CNeRF Intel oneTBB Large, Equally-Sized Tasks Performance Graph

5

CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph

6

CNeRF Intel oneTBB Small Tasks Performance Graph

7

CNeRF Simulation Theory Small Tasks Performance Graph

Author: Randy Culley, CTO
sales@simtheoryinc.com

simtheoryinc.com
Copyright © 2025. Simulation Theory, Inc. All Rights Reserved.

8

mailto:sales@simtheoryinc.com
http://simtheoryinc.com

	CNeRF Revisited + The Sim Theory Scheduler: A Case Study
	Goal
	
	Hypothesis
	Integration
	Simulation Theory’s Scheduler
	Intel’s oneTBB

	
	Results
	CPU Occupancy
	Large-block Work Distribution
	Fine-Grained Work Distribution

	
	CNeRF Original Performance Graph4
	
	CNeRF Intel oneTBB Large, Equally-Sized Tasks Performance Graph
	CNeRF Simulation Theory Large, Equally-Sized Tasks Performance Graph
	CNeRF Intel oneTBB Small Tasks Performance Graph
	CNeRF Simulation Theory Small Tasks Performance Graph

