
Time and Energy Efficiency + Sim
Theoryʼs Thunder SDK: A Case Study

Executive Summary
In July 2025, Sim Theory set out to show how much time and energy savings Thunder SDK, our
compute optimization solution, could achieve on commonly-available cloud and on-premise server
infrastructure.

The test was conducted on-premises on three hardware configurations:
➔ Top-tier
➔ Mid-tier
➔ Low-tier

Sim Theory selected these configurations because they cover or approximate a wide variety of
common processing scenarios. The top-tier system, for example, uses the same CPU architecture and
memory as high-performance cloud data centers. Testing was done on on-premise hardware as cloud
providers do not make total power draw or specific consumption statistics available to customers.

The Results
Sim Theoryʼs Thunder SDK accomplished the same work in around 1/10th of the time and achieved an
average of 88.5% energy savings. Compute cost savings are either realized as shown in the
following table as directly proportional to the length of time the cloud instance is busy or in the ability to
move to a cheaper instance type, depending on the needs of the customer.

Time, Energy, and Compute Cost Savings with Sim Theoryʼs Thunder SDK

 Time Savings Energy Savings Compute Cost Savings1

Top-Tier 96.7% 93.1% 96.7%

Mid-Tier 91.4% 84.6% 91.4%

Low-Tier 90.9% 87.8% 90.9%

1 On the closest equivalent AWS instance

1

Hypothesis
Sim Theory can show substantial time and energy savings on both cloud and on-premise hardware
when we use the Thunder SDK to maximize the parallel execution of work on high-performance
computing tasks like AI, simulations, media trans-coding, and other applications.

Testing
The testing process involved resizing 4,578 image files totaling 19.29GB. The files were each originally
4k by 4k pixels and were resized down to 100 by 100 pixels while maintaining the existing aspect ratio.
The output format was png. Additionally, EXIF and XMP data was extracted if it was present in the
original image.

The test was run twice per system, once using the default threading behavior of magick.NET2 and once
using the Thunder SDK to schedule work across up to 85% of the total available threads. Testing was
limited to 85% of the total available threads so as not to interfere with basic operating system function.

Integration
The work necessary to integrate the Thunder SDK with the project source code was what Sim Theory
refers to as a basic, high-level integration.

➔ The pre-compiled Thunder SDK was placed next to the existing project structure.
➔ Only the publicly available features and APIs of magick.NET were used.
➔ Sim Theoryʼs optimized concurrency runtime library was integrated by adding the appropriate

paths and using the STI namespace.
➔ A small library was written to manage application input and output and to set up the Sim Theory

Scheduler to execute work in parallel.
➔ The testing data was highly parallelizable without data dependencies to define.
➔ The Thunder SDK contains C# bindings and magick.NET is implemented in C#. Neither code

boundaries or data had to be managed.

2 magick.NET (https://github.com/dlemstra/Magick.NET) is a commonly used image manipulation package which
leverages the powerful ImageMagick(https://imagemagick.org/index.php) image manipulation library. It was
selected due to the extensive feature set provided and the ease of integrating the Thunder SDK. magick.NET also
allows Sim Theory to design a real-world test of the Thunder SDK cross-language bindings.

2

https://github.com/dlemstra/Magick.NET
https://imagemagick.org/index.php

Results

Top-Tier Results
The top-tier system used for testing was on loan from AMD and was an:

➔ AMD Ryzen Threadripper PRO 7955WX 16Core3 Processor @ 4.5GHz, Windows 11 system with

128GB of DDR5 RAM
➔ It is most equivalent to a c7a.8xlarge AWS instance.

This processor was chosen for testing specifically because it uses the Zen 4 architecture, which is the
same architecture used in the EPYC server CPUs used by Amazon, Google, IBM, Microsoft, and Oracle
in their high-performance cloud computing infrastructure. Additionally, the RAM is equivalent to what is
used in that infrastructure.

Default Threading Results
Completing testing using the default threading behavior of magick.NET took 21 minutes and 45.5
seconds. On the equivalent c7a.8xlarge AWS instance, the compute portion would cost $1.134.

The total power consumption was:

 CPU System-Wide

Median Total Use 110,017.1 watts 227,815.16 watts

28 Thread Results
Completing testing using the Thunder SDK to distribute work across 28 threads took 42.6 seconds. The
compute portion would cost $0.04 to run in AWS.

The Thunder SDK shortened the test by 21 minutes and 2.9 seconds, a 96.7% savings, and a compute
cost savings in AWS of $1.09.

4 On an instance in US West Oregon running Windows the hourly rate at time of publication is $3.11424/hour.
3 16 physical cores with 2 logical counts per core - 32 total cores, test ran using 28 cores

3

The total power consumption was:

 CPU System-Wide

Median Total Use 9,893.64 watts 15,647.42 watts

Total Power
Savings

100,123.46 watts
91%

212,167.74 watts
93.1%

4

5

Mid-Tier Results
The mid-tier system used for testing was an:

➔ AMD Ryzen Threadripper 2990WX 32Core5 Processor @ 3.0GHz, Windows 10 system with

128GB of DDR4 RAM
➔ It is most equivalent to a c5a.16xlarge AWS instance.

Default Threading Results
Completing testing using the default threading behavior of magick.NET took 39 minutes and 39.9
seconds. On the equivalent c5a.16xlarge AWS instance, the compute portion would cost $3.576.

6 On an instance in US West Oregon running Windows the hourly rate at time of publication is $5.4048/hour.
5 32 physical cores with 2 logical counts per core - 64 total cores, test ran using 56 cores

6

The total power consumption was:

 CPU System-Wide

Median Total Use 164,953.16 watts 357,227.94 watts

56 Thread Results
Completing testing using the Thunder SDK to distribute work across 56 threads took 3 minutes and
25.6 seconds. The compute portion would cost $0.31 to run in AWS.

The Thunder SDK shortened the test by 36 minutes and 14.3 seconds, a 91.4% savings, and a
compute cost savings in AWS of $3.26.

The total power consumption was:

 CPU System-Wide

Median Total Use 32,993.21 watts 55,053.79 watts

Total Power
Savings

131,959.95 watts
80%

302,174.15 watts
84.6%

7

8

9

Low-Tier Results
The low-tier system used for testing was an:

➔ AMD Ryzen 9 6900HS 8Core7 Processor @ 3.3GHz, Windows 11 laptop with 40GB of DDR4

RAM
➔ It is most equivalent to a m6a.4xlarge AWS instance.

Default Threading Results
Completing testing using the default threading behavior of magick.NET took 67 minutes and 52.6
seconds. On the equivalent m6a.4xlarge AWS instance, the compute portion would cost $1.618.

The total power consumption was:

 CPU System-Wide

Median Total Use 40,624.22 watts 180,131.27 watts

14 Thread Results
Completing testing using the Thunder SDK to distribute work across 14 threads took 6 minutes and 12.2
seconds. The compute portion would cost $0.15 to run in AWS.

The Thunder SDK shortened the test by 61 minutes and 40.4 seconds, a 90.9% savings, and a
compute cost savings in AWS of $1.47.

The total power consumption was:

 CPU System-Wide

Median Total Use 8,526.48 watts 21,945.18 watts

Total Power
Savings

32,097.74 watts
79%

158,186.09 watts
87.8%

8 On an instance in US West Oregon running Windows the hourly rate at time of publication is $1.4272/hour.
7 8 physical cores with 2 logical counts per core - 16 total cores, test ran using 14 cores

10

11

12

Author: Randy Culley, CTO
sales@simtheoryinc.com

simtheoryinc.com
Copyright © 2025. Simulation Theory, Inc. All Rights Reserved.

13

mailto:sales@simtheoryinc.com
http://simtheoryinc.com

	Time and Energy Efficiency + Sim Theory’s Thunder SDK: A Case Study
	Executive Summary
	Hypothesis
	Testing
	Integration
	
	Results
	Top-Tier Results
	Default Threading Results
	28 Thread Results

	Mid-Tier Results
	Default Threading Results
	56 Thread Results

	Low-Tier Results
	Default Threading Results
	14 Thread Results

